748 research outputs found

    Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    Get PDF
    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO<sub>2</sub> exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO<sub>2</sub> fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO<sub>2</sub> flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for

    Leaf area controls on energy partitioning of a mountain grassland

    No full text
    International audienceUsing a six year data set of eddy covariance flux measurements of sensible and latent heat, soil heat flux, net radiation, above-ground phytomass and meteorological driving forces energy partitioning was investigated at a temperate mountain grassland managed as a hay meadow in the Stubai Valley (Austria). The main findings of the study were: i) Energy partitioning was dominated by latent heat, followed by sensible heat and the soil heat flux; ii) When compared to standard environmental forcings, the amount of green plant matter, which due to three cuts varied considerably during the vegetation period, explained similar, and partially larger, fractions of the variability in energy partitioning; ii) There were little, if any, indications of water stress effects on energy partitioning, despite reductions in soil water availability in combination with high evaporative demand, e.g. during the summer drought of 2003

    Leaf area controls on energy partitioning of a temperate mountain grassland

    Get PDF
    Using a six year data set of eddy covariance flux measurements of sensible and latent heat, soil heat flux, net radiation, above-ground phytomass and meteorological driving forces energy partitioning was investigated at a temperate mountain grassland managed as a hay meadow in the Stubai Valley (Austria). The main findings of the study were: (i) Energy partitioning was dominated by latent heat, followed by sensible heat and the soil heat flux; (ii) When compared to standard environmental forcings, the amount of green plant matter, which due to three cuts varied considerably during the vegetation period, explained similar, and partially larger, fractions of the variability in energy partitioning; (iii) There were little, if any, indications of water stress effects on energy partitioning, despite reductions in soil water availability in combination with high evaporative demand, e.g. during the summer drought of 2003

    Gap-filling strategies for annual VOC flux data sets

    Get PDF
    Up to now the limited knowledge about the exchange of volatile organic compounds (VOCs) between the biosphere and the atmosphere is one of the factors which hinders more accurate climate predictions. Complete long-term flux data sets of several VOCs to quantify the annual exchange and validate recent VOC models are basically not available. In combination with long-term VOC flux measurements the application of gap-filling routines is inevitable in order to replace missing data and make an important step towards a better understanding of the VOC ecosystem–atmosphere exchange on longer timescales. <br><br> We performed VOC flux measurements above a mountain meadow in Austria during two complete growing seasons (from snowmelt in spring to snow reestablishment in late autumn) and used this data set to test the performance of four different gap-filling routines, mean diurnal variation (MDV), mean gliding window (MGW), look-up tables (LUT) and linear interpolation (LIP), in terms of their ability to replace missing flux data in order to obtain reliable VOC sums. According to our findings the MDV routine was outstanding with regard to the minimization of the gap-filling error for both years and all quantified VOCs. The other gap-filling routines, which performed gap-filling on 24 h average values, introduced considerably larger uncertainties. The error which was introduced by the application of the different filling routines increased linearly with the number of data gaps. Although average VOC fluxes measured during the winter period (complete snow coverage) were close to zero, these were highly variable and the filling of the winter period resulted in considerably higher uncertainties compared to the application of gap-filling during the measurement period. <br><br> The annual patterns of the overall cumulative fluxes for the quantified VOCs showed a completely different behaviour in 2009, which was an exceptional year due to the occurrence of a severe hailstorm, compared to 2011. Methanol was the compound which, at 381.5 mg C m<sup>&minus;2</sup> and 449.9 mg C m<sup>&minus;2</sup>, contributed most to the cumulative VOC carbon emissions in 2009 and 2011, respectively. In contrast to methanol emissions, however, considerable amounts of monoterpenes (−327.3 mg C m<sup>&minus;2</sup>) were deposited onto the mountain meadow during 2009 caused by a hailstorm. Other quantified VOCs had considerably lower influences on the annual patterns

    Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Get PDF
    Ajuts: we thank the support of KIT IMK-IFU, the University of Wisconsin sabbatical leave program, and the Helmholtz Society/MICMOR fellowship program. We also thank the DWD for German weather data. Phenology data were provided by the members of the PEP725 project. We are indebted to the providers and funders of the eddy covariance flux tower observations, the FLUXNET program, and its database. The sites in Graswang, Rottenbuch and Fendt belong to the TERENO and ICOS-ecosystems networks, funded by Bundesministerium für Bildung und Forschung(BMBF)and the Helmholtz Association. The modeling study of SOLVEG was partially supported by Grant-in-Aid for Scientific Research, no. 21120512, provided by the Japan Society for the Promotion of Science(JSPS). This study was financially supported by the Austrian National Science Fund(FWF) under contract P26425 to GW.Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies

    Magnetic Field Dependent Tunneling in Glasses

    Full text link
    We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both, the complete lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure

    The relationship of leaf photosynthetic traits - V-cmax and J(max) - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study

    Get PDF
    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting

    Modular Invariance and Uniqueness of Conformal Characters

    Full text link
    We show that the conformal characters of various rational models of W-algebras can be already uniquely determined if one merely knows the central charge and the conformal dimensions. As a side result we develop several tools for studying representations of SL(2,Z) on spaces of modular functions. These methods, applied here only to certain rational conformal field theories, may be useful for the analysis of many others.Comment: 21 pages (AMS TeX), BONN-TH-94-16, MPI-94-6

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio
    • …
    corecore